Search results for "Density matrix"

showing 10 items of 106 documents

Long-range interactions and the sign of natural amplitudes in two-electron systems

2013

In singlet two-electron systems the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as func…

Atomic Physics (physics.atom-ph)General Physics and AstronomyInteraction strengthFOS: Physical sciences02 engineering and technologyElectron01 natural sciencesPhysics - Atomic PhysicsCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesCoulombPhysical and Theoretical ChemistryWave functionPhysicsQuantum Physicsta114010304 chemical physicsStrongly Correlated Electrons (cond-mat.str-el)Avoided crossingComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyAmplitudesymbolsReduced density matrix0210 nano-technologyHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Physics - Computational Physics
researchProduct

Effective pseudopotential for energy density functionals with higher-order derivatives

2011

We derive a zero-range pseudopotential that includes all possible terms up to sixth order in derivatives. Within the Hartree-Fock approximation, it gives the average energy that corresponds to a quasi-local nuclear Energy Density Functional (EDF) built of derivatives of the one-body density matrix up to sixth order. The direct reference of the EDF to the pseudopotential acts as a constraint that divides the number of independent coupling constants of the EDF by two. This allows, e.g., for expressing the isovector part of the functional in terms of the isoscalar part, or vice versa. We also derive the analogous set of constraints for the coupling constants of the EDF that is restricted by sp…

Density matrixCoupling constantPhysicsNuclear and High Energy PhysicsNuclear Theoryta114IsovectorIsoscalarNuclear TheoryHartree–Fock methodFOS: Physical sciencesNuclear Theory (nucl-th)Constraint (information theory)PseudopotentialQuantum mechanicsHomogeneous spaceComputer Science::Operating SystemsPhysical Review C
researchProduct

Estimation of the Repeatedly-Projected Reduced Density Matrix under Decoherence

2007

Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracted asymptotically. Nevertheless, we find a way out of this difficulty by deriving an analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite number of measurements.

PhysicsDensity matrixQuantum PhysicsQuantum decoherenceSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciAnalytical expressionsDephasingsteFoundations of quantum mechanicFOS: Physical sciencesState (functional analysis)DecoherenceAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaClassical mechanicsDissipative systemReduced density matrixopen systemQuantum Physics (quant-ph)Finite set
researchProduct

Spectral Function of the One-Dimensional Hubbard Model away from Half Filling

2004

We calculate the photoemission spectral function of the one-dimensional Hubbard model away from half filling using the dynamical density matrix renormalization group method. An approach for calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact Bethe Ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for spin-charge separation on the scale of the conduction band width.

PhysicsDensity matrixStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelFOS: Physical sciencesGeneral Physics and AstronomyRenormalization groupThermal conductionSpinonBethe ansatzConductorCondensed Matter - Strongly Correlated ElectronsLuttinger liquidQuantum electrodynamicsQuantum mechanicsCondensed Matter::Strongly Correlated ElectronsPhysical Review Letters
researchProduct

Generation and Coherent Control of Pulsed Quantum Frequency Combs

2018

We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…

0301 basic medicineDensity matrixOptics and PhotonicsPhotonGeneral Chemical EngineeringSettore ING-INF/01 - ElettronicaGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesEngineering0302 clinical medicineQuantum stateQuantum DotsQuantumQCQuantum opticsPhysicsGeneral Immunology and Microbiologybusiness.industryGeneral NeuroscienceNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici030104 developmental biologyCoherent controlQuantum optics Integrated photonic devices Mode-locked lasers Nonlinear optics Four-wave mixing Frequency combs High- dimensional statesFrequency domainOptoelectronicsbusiness030217 neurology & neurosurgeryJournal of Visualized Experiments
researchProduct

Relativistic corrections to electrical first-order properties using direct perturbation theory.

2008

Direct perturbation theory (DPT) is applied to compute relativistic corrections to electrical properties such as dipole moment, quadrupole moment, and electric-field gradient. The corrections are obtained as second derivatives of the energy and are given via method-independent expressions that involve the first derivative of the density matrix with respect to the relativistic perturbation as well as property integrals with additional momentum operators. Computational results obtained using Hartree-Fock (HF), second-order Moller-Plesset (MP2) perturbation theory, and the coupled-cluster singles and doubles approach augmented by a perturbative treatment of triple excitations are presented for…

PhysicsDensity matrixDipoleQuantum electrodynamicsQuantum mechanicsQuadrupoleGeneral Physics and AstronomyPerturbation (astronomy)Perturbation theory (quantum mechanics)Physical and Theoretical ChemistryRelativistic quantum chemistryElectron electric dipole momentSecond derivativeThe Journal of chemical physics
researchProduct

Nuclear energy density optimization: Shell structure

2013

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose c…

PhysicsDensity matrixNuclear and High Energy PhysicsWork (thermodynamics)ta114Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsOrbital-free density functional theoryBinding energyNuclear TheoryFOS: Physical sciences01 natural sciencesComputational physicsNuclear physicsNuclear Theory (nucl-th)0103 physical sciencesTensor010306 general physicsParametrizationOpen shellNuclear density
researchProduct

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Black hole evaporation in a thermalized final-state projection model

2007

4 pages, 1 figure.-- PACS nrs.: 04.70.Dy; 03.67.-a.-- ISI Article Identifier: 000245333600044.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0611152

High Energy Physics - TheoryPhysicsDensity matrixQuantum PhysicsNuclear and High Energy PhysicsFOS: Physical sciencesSemiclassical physicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyBlack hole[PACS] Quantum informationGeneral Relativity and Quantum CosmologyThermalisationQuasistatic approximationHigh Energy Physics - Theory (hep-th)Thermal radiationQuantum mechanicsQuantum electrodynamics[PACS] Quantum aspects of black holes evaporation thermodynamicsAstronomiaBoundary value problemQuantum Physics (quant-ph)Hawking radiation
researchProduct

Loss of coherence and dressing in QED

2006

The dynamics of a free charged particle, initially described by a coherent wave packet, interacting with an environment, i.e. the electromagnetic field characterized by a temperature $T$, is studied. Using the dipole approximation the exact expressions for the evolution of the reduced density matrix both in momentum and configuration space and the vacuum and the thermal contribution to decoherence, are obtained. The time behaviour of the coherence lengths in the two representations are given. Through the analysis of the dynamic of the field structure associated to the particle the vacuum contribution is shown to be linked to the birth of correlations between the single momentum components o…

Electromagnetic fieldPhysicsDensity matrixQuantum PhysicsPhotonQuantum decoherenceoscillatorsWave packetVirtual particleFOS: Physical sciencesAtomic and Molecular Physics and OpticsCharged particleharmonic oscillatorsQuantum electrodynamicsQuantum mechanicsbathsQuantum Physics (quant-ph)Coherence (physics)
researchProduct